Single-cell chemical lysis method for analyses of intracellular molecules using an array of picoliter-scale microwells.

نویسندگان

  • Yasuhiro Sasuga
  • Tomoyuki Iwasawa
  • Kayoko Terada
  • Yoshihiro Oe
  • Hiroyuki Sorimachi
  • Osamu Ohara
  • Yoshie Harada
چکیده

Analyzing the intracellular contents and enzymatic activities of single cells is important for studying the physiological and pathological activities at the cellular level. For this purpose, we developed a simple single-cell lysis method by using a dense array of microwells of 10-30-pL volume fabricated by poly(dimethylsiloxane) (PDMS) and a commercially available cell lysis reagent. To demonstrate the performance of this single-cell lysis method, we carried out two different assays at the single-cell level: detection of proteins by antibody conjugated microbeads and measurement of protease activity by fluorescent substrates. The results indicated that this method readily enabled us to monitor protein levels and enzymatic activities in a single cell. Because this method required only an array of PDMS microwells and a fluorescence microscope, the simplicity of this platform opens a way to explore the biochemical characteristics of single cells even by those who are not familiar with microfluidic technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-Cell Chemical Lysis on Microfluidic Chips with Arrays of Microwells

Many conventional biochemical assays are performed using populations of cells to determine their quantitative biomolecular profiles. However, population averages do not reflect actual physiological processes in individual cells, which occur either on short time scales or nonsynchronously. Therefore, accurate analysis at the single-cell level has become a highly attractive tool for investigating...

متن کامل

Single-Cell Electric Lysis on an Electroosmotic-Driven Microfluidic Chip with Arrays of Microwells

Accurate analysis at the single-cell level has become a highly attractive tool for investigating cellular content. An electroosmotic-driven microfluidic chip with arrays of 30-μm-diameter microwells was developed for single-cell electric lysis in the present study. The cellular occupancy in the microwells when the applied voltage was 5 V (82.4%) was slightly higher than that at an applied volta...

متن کامل

Laser-based directed release of array elements for efficient collection into targeted microwells.

A cell separation strategy capable of the systematic isolation and collection of moderate to large numbers (25-400) of single cells into a targeted microwell is demonstrated. An array of microfabricated, releasable, transparent micron-scale pedestals termed pallets and an array of microwells in poly(dimethylsiloxane) (PDMS) were mated to enable selective release and retrieval of individual cell...

متن کامل

A novel picoliter droplet array for parallel real-time polymerase chain reaction based on double-inkjet printing.

We developed and characterized a novel picoliter droplet-in-oil array generated by a double-inkjet printing method on a uniform hydrophobic silicon chip specifically designed for quantitative polymerase chain reaction (qPCR) analysis. Double-inkjet printing was proposed to efficiently address the evaporation issues of picoliter droplets during array generation on a planar substrate without the ...

متن کامل

Cancer Cell Analyses at the Single Cell-Level Using Electroactive Microwell Array Device

Circulating tumor cells (CTCs), shed from primary tumors and disseminated into peripheral blood, are playing a major role in metastasis. Even after isolation of CTCs from blood, the target cells are mixed with a population of other cell types. Here, we propose a new method for analyses of cell mixture at the single-cell level using a microfluidic device that contains arrayed electroactive micro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 80 23  شماره 

صفحات  -

تاریخ انتشار 2008